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In this paper, we propose a general time-discrete framework to design asymptotic-preserv-
ing schemes for initial value problem of the Boltzmann kinetic and related equations.
Numerically solving these equations are challenging due to the nonlinear stiff collision
(source) terms induced by small mean free or relaxation time. We propose to penalize
the nonlinear collision term by a BGK-type relaxation term, which can be solved explicitly
even if discretized implicitly in time. Moreover, the BGK-type relaxation operator helps to
drive the density distribution toward the local Maxwellian, thus naturally imposes an
asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need
any nonlinear iterative solver or the use of Wild Sum. It is uniformly stable in terms of
the (possibly small) Knudsen number, and can capture the macroscopic fluid dynamic
(Euler) limit even if the small scale determined by the Knudsen number is not numerically
resolved. It is also consistent to the compressible Navier–Stokes equations if the viscosity
and heat conductivity are numerically resolved. The method is applicable to many other
related problems, such as hyperbolic systems with stiff relaxation, and high order parabolic
equations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Boltzmann equation describes the time evolution of the density distribution of a dilute gas of particles when the only
interactions taken into account are binary elastic collisions. For space variable x 2 X � Rdx , particle velocity v 2 Rdv (dv P 2),
the Boltzmann equation reads:
@f
@t
þ v � rxf ¼ 1

e
Qðf Þ; ð1:1Þ
where f :¼ f(t,x,v) is the time-dependent particles distribution function in the phase space. Here for simplicity, we do not
study the case of Maxwell diffusion boundary condition for which boundary layers may be generated, but only consider
specular or periodic boundary condition in space. The parameter e > 0 is the dimensionless Knudsen number defined as
the ratio of the mean free path over a typical length scale such as the size of the spatial domain, which measures the rare-
fiedness of the gas. The Boltzmann collision operator Q is a quadratic operator,
. All rights reserved.
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Qðf ÞðvÞ ¼
Z

Rdv

Z
Sdv�1

Bðjv � vHj; cos hÞ f 0
H

f 0 � fHf
� �

drdvH; ð1:2Þ
where we used the shorthanded notation f ¼ f ðvÞ; f
H
¼ f ðvHÞ; f 0 ¼ f ðv 0Þ; f 0

H
¼ f ðv 0

H
Þ. The velocities of the colliding pairs

(v,vw) and ðv 0;v 0
H
Þ are related by
v 0 ¼ v � 1
2 ðv � vHÞ � jv � vHjrð Þ;

v 0
H
¼ v � 1

2 ðv � vHÞ þ jv � vHjrð Þ;

(

with r 2 S
dv�1. The collision kernel B is a non-negative function which by physical arguments of invariance only depends on

jv � vwj and cosh = u � r (where u = (v � vw)/jv � vwj is the normalized relative velocity). In this work we assume that B is lo-
cally integrable and we will simply take
Bðjuj; cos hÞ ¼ Cajuja ð1:3Þ
for some a 2 [0,1] and a constant Ca > 0.
Boltzmann’s collision operator has the fundamental properties of conserving mass, momentum and energy: at the formal

level
 Z
Rdv
Qðf Þ/ðvÞdv ¼ 0; for /ðvÞ ¼ 1; v; jv j2 ð1:4Þ
and it satisfies the well-known Boltzmann’s H theorem
� d
dt

Z
Rdv

f log fdv ¼ �
Z

Rdv
Qðf Þ logðf Þdv P 0:
The functional �
R

f log f is the entropy of the solution. Boltzmann’s H theorem implies that any equilibrium distribution
function, i.e., any function which is a maximum of the entropy, has the form of a local Maxwellian distribution
Mq;u;TðvÞ ¼
q

ð2pTÞdv =2 exp � ju� v j2

2T

 !
;

where q, u, T are the density, macroscopic velocity and temperature of the gas, defined by
q ¼
Z

Rdv
f ðvÞdv ¼

Z
Rdv
Mq;u;TðvÞ; u ¼ 1

q

Z
Rdv

vf ðvÞdv ¼ 1
q

Z
Rdv

vMq;u;TðvÞdv; ð1:5Þ

T ¼ 1
dvq

Z
Rdv
ju� v j2f ðvÞdv ¼ 1

dvq

Z
Rdv
ju� v j2Mq;u;TðvÞdv : ð1:6Þ
Therefore, when the Knudsen number e > 0 becomes very small, the macroscopic model, which describes the evolution of
averaged quantities such as the density q, momentum qu and temperature T of the gas, by fluid dynamics equations, namely,
the compressible Euler or Navier–Stokes equations, become adequate [1,5]. More specifically, as e ? 0, the distribution func-
tion will converge to a local MaxwellianM, and system (1.2) becomes a closed system for the 2 + dv moments. The conserved
quantities satisfy the classical Euler equations of gas dynamics for a mono-atomic gas:
@q
@t þrx � qu ¼ 0;
@qu
@t þrx � qu� uþ pIð Þ ¼ 0;
@E
@t þrx � ðEþ pÞuð Þ ¼ 0;

8><
>: ð1:7Þ
where p is the pressure, E represents the total energy
E ¼ 1
2
qu2 þ dv

2
qT;
and I is the identity matrix. These equations constitute a system of 2 + dv equations in 3 + dv unknowns. The pressure is re-
lated to the internal energy by the constitutive relation for a polytropic gas
p ¼ ðc� 1Þ E� 1
2
qjuj2

� �
;

where the polytropic constant c = (dv + 2)/dv represents the ratio between specific heat at constant pressure and at constant
volume, thus yielding p = qT. For small but non zero values of the Knudsen number e, the evolution equation for the mo-
ments can be derived by the so-called Chapman–Enskog expansion [10], applied to the Boltzmann equation. This approach
gives the Navier–Stokes equations as a second order approximation with respect to e to the solution of the Boltzmann
equation:
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@qe
@t þrx � qeue ¼ 0;
@qeue
@t þrx � ðqeue � ue þ peIÞ ¼ erx � ½lerðueÞ�;

@Ee
@t þrx � ðEe þ peÞueÞ ¼ erx � lerðueÞuþ jerxTe

� �
:

8>><
>>: ð1:8Þ
In these equations r(u) denotes the strain-rate tensor given by
rðuÞ ¼ rxuþ rxuð ÞT � 2
dv
rx � uI;
while the viscosity le = l(Te) and the thermal conductivity je = j(Te) are defined according to the linearized Boltzmann oper-
ator with respect to the local Maxwellian [1].

The connection between kinetic and macroscopic fluid dynamics results from two properties of the collision operator
[1,5]:

(i) conservation properties and an entropy relation that imply that the equilibria are Maxwellian distributions for the zer-
oth order limit;

(ii) the derivative ofQðf Þ satisfies a formal Fredholm alternative with a kernel related to the conservation properties of (i).

Past progress on developing robust numerical schemes for kinetic equations that also work in the fluid regimes has been
guided by the fluid dynamic limit, in the framework of asymptotic-preserving (AP) scheme. As summarized by Jin [35], a
scheme for the kinetic equation is AP if

� it preserves the discrete analogy of the Chapman–Enskog expansion, namely, it is a suitable scheme for the kinetic equa-
tion, yet, when holding the mesh size and time step fixed and letting the Knudsen number go to zero, the scheme
becomes a suitable scheme for the limiting Euler equations,
� implicit collision terms can be implemented explicitly, or at least more efficiently than using the Newton type solvers for

nonlinear algebraic systems.

Comparing with a multi-physics domain decomposition type method [6,18,20,33,46,56], the AP schemes avoid the cou-
pling of physical equations of different scales where the coupling conditions are difficult to obtain, and interface locations
hard to determine. The AP schemes are based on solving one equation – the kinetic equation, and they become robust
macroscopic (fluid) solvers automatically when the Knudsen number goes to zero. A generic way to prove that an AP scheme
implies a numerical convergence uniformly in the Knudsen number was given by Golse–Jin–Levermore for the linear
discrete-ordinate transport equation in the diffusion regime [31]. This result can be extended to essentially all AP schemes,
although the specific proof is problem dependent. We refer to AP schemes for kinetic equations in the fluid dynamic or
diffusive regimes [2,7,14,32,40–42,44,45,47–49]. The AP framework has also been extended in [15,16] for the study of the
quasi-neutral limit of Euler–Poisson and Vlasov–Poisson systems, and in [19,21,34] for all-speed (Mach number) fluid
equations bridging the passage from compressible flows to the incompressible flows. One should note that under-resolved
computation may not yield accurate or even physically correct approximations in areas with sharp transitions, such as shock
and boundary layers. In these areas one may want to use resolved calculations. The AP schemes allow one to use suitable
mesh size and time step at needed domains with one first-principle equation, thus is especially suitable for problems with
localized sharp transitions where macroscopic simulation is necessary.

To satisfy the first condition for AP, the scheme must be driven to the local Maxwellian when e ? 0. Let tn(n = 0,1,2, . . .) be
the discrete time, and Un = U(tn) for a general quantity U. Then an AP scheme requires that, for Dt� e,
f n �Mn ¼ OðeÞ; n P 1 ð1:9Þ
for any initial data f0. Namely, the numerical solution projects any data into the local Maxwellian, with an accuracy of O(e), in
one step. This can usually be achieved by a backward Euler or any L-stable ODE solvers for the collision term [36]. Such a
scheme requires an implicit collision term to guarantee a uniform stability in time. However, how to invert such an implicit,
yet non-local and nonlinear, collision operator is a delicate numerical issue. Namely, it is hard to realize the second condition
for AP schemes. One solution was offered by Gabetta et al. [28]. They first penalize Q by a linear function kf, and then absorb
the linearly stiff part into the time variable to remove the stiffness. The remaining implicit nonlinear collision term is approx-
imated by finite terms in the Wild Sum, with the infinite sum replaced by the local Maxwellian. This yields a uniformly stable
AP scheme for the collision term, capturing the Euler limit when e ? 0. Such a time-relaxed method was also used to develop
AP Monte Carlo method, see [8,51].

When the collision operator Q is the BGK collision operator
QBGK ¼M� f ; ð1:10Þ
it is well known that even an implicit collision term can be solved explicitly, using the property that Q preserves mass,
momentum and energy [14]. Our new idea in this paper is to utilize this property, and penalize the Boltzmann collision oper-
ator Q by the BGK operator:
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Q ¼ ½Q � kðM� f Þ� þ k½M� f �; ð1:11Þ
where k is the spectral radius of the linearized collision operator of Q around the local Maxwellian M.
Now the first term on the right hand side of (1.11) is either not stiff, or less stiff and less dissipative compared to the sec-

ond term, thus it can be discretized explicitly, so as to avoid inverting the nonlinear operator Q. The second term on the right
hand side of (1.11) is stiff or dissipative, thus will be treated implicitly. As mentioned earlier, the implicit BGK operator can
be inverted explicitly. Therefore we arrive at a scheme which is uniformly stable in e, with an implicit source term that can
be solved explicitly. In other words, in terms of handling the stiffness, the general Boltzmann collision operator can be han-
dled as easily as the much simpler BGK operator, thus we significantly simplify an implicit Boltzmann solver!

A related problem is hyperbolic systems with relaxations. Such systems arise in reacting gases, shallow water equations,
discrete-velocity kinetic models, etc. [57], and have been mathematically studied extensively in recent years (see for exam-
ple [4,12,43,50]). A prototype example is the following 2 	 2 nonlinear hyperbolic system with relaxation:
@u
@t þ f1ðu; vÞx ¼ 0;
@v
@t þ f2ðu;vÞx ¼ 1

e Rðu;vÞ:

(
ð1:12Þ
The relaxation term R : R2#R is dissipative in the sense of [12]:
@vR 6 0: ð1:13Þ
It possesses a unique local equilibrium, namely, R(u,v) = 0 implies v = g(u). At the local equilibrium, one has the macroscopic
system
ut þ f1ðu; gðuÞÞx ¼ 0:
This system can be derived by sending e ? 0 in (1.12), the so-called zero relaxation limit [12]. This limit is analogous to the
passage from kinetic equations to their fluid limit, and in the last decade the development in these two areas – both analytic
studies and numerical approximations – have strongly intervened. The numerical methods for such systems are similar to
those developed for the Boltzmann equations, especially for discrete-velocity kinetic models [7,36]. The guiding principle
for the AP schemes is the same for both classes of problems, and in this paper we will study both applications whenever
appropriate.

Let Vn and Un be the time-discrete approximations to v and u respectively in (1.12). A classical AP scheme requires that, for
Dt� e,
Vn � gðUnÞ ¼ OðeÞ; n P 1 ð1:14Þ
for any initial data V0. Namely, the numerical solution projects any data V into the local equilibrium V = f(U), with an accuracy
of O(e), in one step. This is the analogy of (1.9). Our new method is not necessarily AP in the classical sense of (1.14). Nev-
ertheless, we can show that, for any e, and Dt� e, there exists an Ne P 1, such that
Vn � gðUnÞ ¼ OðeÞ; n P Ne ð1:15Þ
for any initial data V0. Namely, the numerical solution projects the solution into the local equilibrium after the initial tran-
sient time, for any initial data. This is a slightly weaker condition than (1.14), but is enough to guarantee the desired numer-
ical performance as good as the classical AP schemes.

Although a linear penalty (by removing M on the right hand side of (1.11)) can also remove the stiffness, we can show
that, when applied to the relaxation system (1.12), it only has the following property:
Vn � gðUnÞ ¼ OðDtÞ; n P N ð1:16Þ
for any initial data V0, when Dt� e. Since in the fluid regime, we really want to take Dt� e, schemes with a weak AP prop-
erty (1.16) is much less accurate than our scheme which has the property (1.15). The BGK operator that we use in (1.11)
helps to drive f intoM (or V into g(u)) more effectively than a linear damping �kf, thus preserves the Euler limit more accu-
rately. Moreover, if vn � g(Un) = O(e) (well-prepared initial data), then our method implies that vn+1 � g(Un+1) = O(e), while the
linear penalty method always yields vn+1 � g(Un+1) = O(Dt) even for well-prepared initial data.

For the Boltzmann equation, although we cannot analytically prove an analogy of (1.15) for f �M, our numerical exam-
ples show that this is true. We can prove, however, that if the initial data are well prepared,
f n �Mn ¼ OðeÞ for some n ¼ N P 0:
then the scheme captures the correct Euler limit for later time n > N. Moreover, for suitably small time step, our method is
also consistent to the Navier–Stokes Eq. (1.8) for e
 1.

Our method is partly motivated by the work of Haack et al. [34], where by subtracting the leading linear part of the pres-
sure in the compressible Euler equations with a low Mach number, the nonlinear stiffness in the pressure term due to the
low Mach number is removed and an AP scheme was proposed for the compressible Euler or Navier–Stokes equations that
capture the incompressible Euler or Navier–Stokes limit when the Mach number goes to zero. In terms of removing the stiff-
ness of nonlinear parabolic equations Smereka used the idea of adding and subtracting a linear elliptic operator. However his
approach was not aimed at achieving the AP property.
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Our method is not restricted to the Boltzmann equation. It applies to general nonlinear hyperbolic systems with stiff non-
linear relaxation terms [12,13,36,39], as will be shown in Section 3, and higher-order parabolic equations (see Section 6).
Indeed, it applies to any stiff source term that admits a stable local equilibrium.

We will present and study this framework for stiff ODEs (Section 2), nonlinear hyperbolic system with relaxation (Section
3), and the Boltzmann equation (Section 4). We present different numerical tests on the Boltzmann equation in Section 5 to
illustrate the efficiency of the present method. In particular, we will include a multi-scale problem where the Knudsen num-
ber e depends on the space variable and takes different values ranging from 10�4 (hydrodynamic regime) to 1 (kinetic re-
gime). Finally, in Section 6, we design a scheme for the nonlinear Fokker–Planck equations for which the asymptotic-
preserving scheme can be used to remove the CFL constraint of a parabolic equation. We conclude the paper in Section 7.

2. Asymptotic-preserving (AP) stiff ODE solvers

We first present our method for stiff ordinary differential equations. Let us consider a Hilbert space H and the following
nonlinear autonomous ordinary differential system
dfe
dt ðtÞ ¼

QðfeÞ
e ; t P 0;

feð0Þ ¼ f0 2 H;

(
ð2:1Þ
where the source term Qðf Þ satisfies the following properties:

� there exists a unique stationary solution M to (2.1), namely, QðMÞ ¼ 0;
� the solution to (2.1) converges to the steady state M when time goes to infinity, and the spectrum of
rQðf Þ � C� ¼ fzjz 2 C�;ReðzÞ < 0g,
0 < am 6 krQðf Þk 6 aM; 8f 2 H n f0g: ð2:2Þ
where rQðf Þ denotes the Frechet derivative of Q.

Remark 2.1. The second hypothesis above is certainly not the most general, but is convenient for our purpose. The lower
bound implies that the solution converges to the steady state M, while the upper bound is a sufficient condition for exis-
tence and uniqueness of a global solution.

When e becomes small, the differential Eq. (2.1) becomes stiff and explicit schemes are subject to severe stability con-
straints. Of course, implicit schemes allow larger time step, but new difficulty arises in seeking the numerical solution of
a fully nonlinear problem at each time step. Here we want to combine both advantages of implicit and explicit schemes:
large time step for stiff problems and low computational complexity of the numerical solution at each time step.

Two classical procedures handle the aforementioned difficulties well. One is to linearize the unknownQðf nþ1Þ at time step
tn+1 around f at the previous time step fn:
Qðf nþ1Þ � Qðf nÞ þ rQðf nÞðf nþ1 � f nÞ: ð2:3Þ
This yields a problem that only needs to solve a linear system with coefficient matrices depending on rQðf nÞ [58]. This ap-
proach gives a uniformly stable time discretization without nonlinear solvers. The second approach, introduced in [28], takes
Qðf Þ ¼ ½Qðf Þ � lf � þ lf : ð2:4Þ
In [42], the second lf term in absorbed into the time derivative, which removes the stiffness, and then Q(f) is approximated
by the Wild Sum which is truncated at finite terms with the remaining infinite series replaced by the local Maxwellian in
order to become AP. If one is just interested in removing the stiffness, one can just approximate the right hand side of
(2.4) by
Qðf nÞ � lf n½ � þ lf nþ1:
For sufficiently large l, this yields a scheme with stability independent of e, yet can be solved explicitly. However, a disad-
vantage of the linear penalty method, as well as method (2.3), is that the operators on the right hand size do not preserve
exactly the mass, momentum and total energy as the BGK operator does.

As will be shown in Section 3, these two classical approaches project the data into the local equilibrium in the sense of
(1.16).

We propose to split the source term of (2.1) as the sum of a stiff-dissipative part and a non-(or less) stiff and non-dissi-
pative part as
Qðf Þ
e
¼ Qðf Þ � Pðf Þ

e|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
less stiff part

þ Pðf Þ
e|{z}

stiff ; dissipative part

; ð2:5Þ
where P(f) is a well balanced, i.e. preserving the steady state, PðMÞ ¼ 0, linear operator and is asymptotically close to the
source term Qðf Þ. For instance, performing a simple Taylor expansion, we get
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Qðf Þ ¼ QðMÞ þrQðMÞðf �MÞ þ Oðkf �Mk2
HÞ
and we may choose
Pðf Þ :¼ rQðMÞðf �MÞ:

Since it is not always possible to compute exactly rQðMÞ, we may simply choose
Pðf Þ :¼ bðM� f Þ;
where b is an upper bound of krQðMÞk or some approximation of it such as ½Qðf Þ � QðMÞ�=ðf �MÞ.
In the following we propose a discretization to (2.5) based on IMEX schemes.
We simply apply a first order implicit-explicit (IMEX) scheme for the time discretization of (2.1):
f nþ1 � f n

Dt
¼ Qðf

nÞ � Pðf nÞ
e

þ Pðf nþ1Þ
e

; ð2:6Þ
or
f nþ1 ¼ eI� DtrQðMÞ½ ��1 ef n þ DtðQðf nÞ � Pðf nÞÞ � DtrQðMÞM½ �:
This method is easy to implement, since fn+1 is linear in the right hand side of (2.6). For linear problems, we have the follow-
ing result:

Theorem 2.2. Consider the differential system (2.1) with Qðf Þ ¼ �kf , where Re (k) > 0. Set P(f) :¼ �mkf with m P 0. Then, the
scheme (2.6) is A-stable and L-stable for m > 1/2.
Proof. For linear systems with Qðf Þ ¼ �kf , the scheme simple reads
f nþ1 ¼ eþ ðm� 1ÞkDt
eþ mkDt

f n ¼ 1� kDt
eþ mkDt

� �
f n:
Observe that m = 0 gives the explicit Euler scheme, which is stable only for Dt 6 e/k, whereas for 0 6 m 6 1, it yields the so-
called h-scheme, which is A-stable for m > 1/2. For m = 1 it corresponds to the A-stable implicit Euler scheme. Moreover,
kf nþ1kH 6 1� kDt
eþ mkDt

����
����kf nkH � 1� 1

m

� �
kf nkH for e � 0 or kDt � 1;
where j1� 1
m j < 1 for m > 1/2. This is also the condition for the L-stability [30]. Clearly k � 1 gives the fastest convergence to

the equilibrium. h

Concerning nonlinear problems, we observe that the scheme (2.6) is not AP in the sense of (1.9). However, we can prove
that it is AP in the sense of (1.15).

Theorem 2.3. Assume that the operator Q satisfies (2.2) and
Qðf nÞ � QðMÞ
f n �M < 0: ð2:7Þ
Assume that Dt� e. Then, for b sufficiently large, there exists an 0 < r < 1, independent of Dt and e, such that
jf n �Mj 6 rnjf 0 �Mj:
Consequently scheme (2.6) is AP in the sense of (1.15).
Proof. We choose b > 0 such that
b >
1
2

sup
f2H

Qðf Þ � QðMÞ
f �M

����
���� ¼ 1

2
aM :
Scheme (2.6) can be written as
½f nþ1 �M� � ½f n �M�
Dt

¼ 1
e
Qðf nÞ � QðMÞ

f n �M þ b

� 	
ðf n �MÞ � b½f nþ1 �M�

e
:

This gives
1þ bDt
e

� �
½f nþ1 �M� ¼ 1þ Dt

e
Dn

� �
½f n �M�;
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where Dn is given by
Dn ¼ Qðf
nÞ � QðMÞ
f n �M þ b:
Clearly, under the assumption (2.7),
jDnj 6 b� 1
2
aM:
Thus,
f nþ1 �M ¼ eþ DtDn

eþ Dtb
½f n �Mn�:
For Dt� e,
r ¼ sup
e;n;Dt

eþ DtDn

eþ Dtb

����
���� � sup

n

b� 1
2 aM

b
< 1
hence (2.8) implies
jf nþ1 �Mj 6 rjf n �Mj:
From here it is simple to see that
jf n �Mj 6 rnjf 0 �Mj:
So for any e > 0, and any initial data, there exists an Ne P 1 such that when n P Ne; f n �M ¼ OðeÞ. This is the AP property
defined in (1.15). h

To improve the numerical accuracy, second order schemes are sometimes more desirable. Thus, we propose the following
second order IMEX extension. Assume that an approximate solution fn is known at time tn, we compute a first approximation
at time t* using a first order IMEX scheme and next apply the trapezoidal rule and the mid-point formula. The scheme reads
2 f H�f n

Dt ¼
Qðf nÞ�Pðf nÞ

e þ Pðf HÞ
e ;

f nþ1�f n

Dt ¼ Qðf HÞ�Pðf HÞ
e þ Pðf nÞþPðf nþ1Þ

2e :

(
ð2:8Þ
For Q = �kf, P = �mkf, (2.8) gives
f nþ1 ¼
1þ Dt

e kðm� 1Þ þ 1
4

Dt
e

� �2
k2ðm2 � 4mþ 2Þ

1þ Dt
2e mk

� �2 f n:
For Dt� e this gives
f nþ1 � m2 � 4mþ 2
m2 f n:
Note that
r ¼ m2 � 4mþ 2
m2

����
���� < 1 if m >

1
2
;

thus the second order IMEX scheme has the same AP property as the first order scheme (2.6). Moreover, we can prove a the-
orem similar to Theorem 2.3 for (2.8) but the details are omitted here.

To illustrate the efficiency of (2.6) and (2.8) in various situations, we consider a simple linear problem with different
scales for which only some components rapidly converge to a steady state whereas the remaining part oscillates. We solve
Qðf Þ ¼ Af ; ð2:9Þ
where
A ¼
�1000 1 0
�1 �1000 0
0 0 i

0
B@

1
CA ð2:10Þ
for which the eigenvalues are Sp(A) = { � 1000 + i,� 1000 � i, i}. The first block represents the fast scales whereas the last one
is the oscillating part. Indeed, the first components go to zero exponentially fast whereas the third one oscillates with respect
to time with a period of 2p. We want to solve accurately the oscillating part with a large time step without resolving the
small scales. Then, we apply the first order (2.6) and second order (2.8) schemes by choosing



Fig. 1.
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Pðf Þ ¼ mAf ;
with m P 0. Here we take a large time step Dt = 0.3 and m = 2, which means that P(f) has the same structure of Qðf Þ but the
eigenvalues are over estimated. Thus, fast scales are under-resolved whereas this times step is a good discretization of the
third oscillating component. Therefore, an efficient AP scheme would give an accurate behavior of the slow oscillating scale
with large time step with respect to the fast scale.

In Fig. 1, we present the real part of the numerical solution to the differential system (2.9), (2.10) corresponding to the
initial datum f(0) = (2,1,1) on the time interval [0,15]. We compare the numerical solution obtained with our first (2.6)
and second (2.8) order AP schemes using a large time step (Dt = 0.3) and the one obtained with a first and second order ex-
plicit Runge–Kutta scheme using a small time step (Dt = 0.0001) for which the numerical solution is stable.

It clearly appears in Fig. 1 (1) that the time step is too large to give accurate results for the first order scheme (2.6): the
solution is stable but the oscillation of the third component is damped for this time step which is too large. This approxima-
tion is compared with the one obtained with a first order explicit Euler using a times step 300 times smaller. Thus, the first
order AP scheme gives a numerical solution which is stable for large time step but the accuracy is not satisfying.

Therefore, we also compare the numerical solution of the second order scheme (2.8) with the one obtained using a second
order explicit Runge–Kutta scheme corresponding to m = 0 with a time step three hundred times smaller. In Fig. 1, we observe
the stability and good accuracy of the second order scheme (2.8). Let us emphasize that for the same time step, the numerical
solution given by an explicit Runge–Kutta scheme blows-up (hence the result is not reported here)!
3. Hyperbolic systems with relaxations

In this section, we propose and study the method for hyperbolic system with (stiff) relaxations. We propose the following
temporal approximation to (1.12):
Unþ1�Un

Dt þ f1ðUn;VnÞx ¼ 0;
Vnþ1�Vn

Dt þ f2ðUn;VnÞx ¼ 1
e RðUn;VnÞ þ bðVn � gðUnÞÞ½ � � b

e Vnþ1 � gðUnþ1Þ
h i

:

8<
: ð3:1Þ
Assume all functions are smooth. Some simple mathematical manipulations on (3.1) give
Vnþ1 � gðUnþ1Þ ¼ � f2ðUn;VnÞx þ ðgðU
nþ1Þ � gðUnÞÞ=Dt

h i eDt
eþ bDt

þ
1þ Dt

e bþ RðUn ;VnÞ
Vn�gðUnÞ

h i
1þ b Dt

e
ðVn � gðUnÞÞ: ð3:2Þ
Note that
RðUn;VnÞ
Vn � gðUnÞ

¼ RðUn;VnÞ � RðUn; gðUnÞÞ
Vn � gðUnÞ

¼ @vRðUn;WnÞ < 0 for some Wn;
thus if
b >
1
2

sup j@vRj;
there exists a constant C, and 0 < r < 1 such that
t=0.001 Δ t

f(t) Xf(t) −−−
Δ =0.31st order AP1st order Euler
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Comparison of the time evolution of the numerical approximation to the differential system (2.9), (2.10) with f(0) = (2,1,1). (1) first and (2) second
symptotic-preserving and explicit Runge–Kutta schemes.
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jVnþ1 � gðUnþ1Þj 6 C
eDt

eþ bDt
þ rjVn � gðUnÞj:
From here it is easy to see that
jVn � gðUnÞj 6 C
1� r

eDt
eþ bDt

þ rnjV0 � gðU0Þj:
This clearly gives
jVn � gðUnÞj 6 C
ð1� rÞb eþ rnjV0 � gðU0Þj ð3:3Þ
in which the first term on the right hand side is O(e) independent of Dt. For any e
 1, there exists an Ne P 1 such that
rnjV0 � gðU0Þj 6 e;
therefore (3.3) implies the desired AP property (1.15).
Next we consider the linear penalty method (2.4):
Unþ1�Un

Dt þ f1ðUn;VnÞx ¼ 0;
Vnþ1�Vn

Dt þ f2ðUn;VnÞx ¼ 1
e RðUn;VnÞ þ bVn½ � � b

e Vnþ1:

(
ð3:4Þ
A simple mathematical manipulation on (3.4) gives
Vnþ1 � gðUnþ1Þ ¼ �f2ðUn;VnÞx
eDt

eþ bDt
� gðUnþ1Þ � gðUnÞ
h i

þ
1þ Dt

e lþ RðUn ;VnÞ
Vn�gðUnÞ

h i
1þ l Dt

e
ðVn � gðUnÞÞ: ð3:5Þ
The first two terms on the right hand side of (3.5) can only be bounded by C(e + Dt), while the third term, under the condition
l >
1
2

sup j@vRj;
is similar to the second term on the right hand side of (3.2). In conclusion, corresponding to (3.3), here we can only obtain
jVn � gðUnÞj 6 Cðeþ DtÞ þ rnjV0 � gðU0Þj; ð3:6Þ
which, if Dt� e, gives only (1.16).
Another observation is the following. From (3.3), one sees that for prepared initial data
V0 ¼ gðU0Þ þ OðeÞ ð3:7Þ
(3.3) implies that
Vn ¼ gðUnÞ þ OðeÞ; for any n P 1:
Namely, if the data are within O(e) of the local equilibrium, they remain so for all future times. However, for the linear pen-
alty method, even if the initial data are well prepared as in (3.7), from (3.6) one sees that
V1 ¼ gðU1Þ þ Oðeþ DtÞ;
so the deviation from the local equilibrium at later times is always of O(Dt) rather than O(e). A similar analysis on method
(2.3) gives a result as in (3.6). We omit the details here.

Now to illustrate the efficiency of our approach, we present numerical simulations on (1.12). We simply consider
@u
@t þ @v

@x ¼ 0;
@v
@t þ a @u

@x ¼
gðvÞ
e f ðuÞ � vð Þ;

uðt ¼ 0; xÞ ¼ 1þ 0:9 sinðpxÞ; vðt ¼ 0; xÞ ¼ cosðpxÞ; x 2 ð�1;1Þ;

8><
>: ð3:8Þ
with g(v) = 1 + jvj4, f(u) = u2/2 and a = supujf0(u)j2. In Fig. 2, we represent the approximation of the solution at time t = 0.1 for
different values of e = 10�1; 10�2 and 10�7 obtained with our AP scheme (3.1) and the linear penalty method (3.4). The num-
ber of points in space is nx = 800 and Dt = 0.0006. Clearly, for the same time step, our scheme gives the correct behavior
which corresponds to the well known solution to the Burgers equations when e tends to zero, whereas the linear penalty
method gives a stable approximation which is not accurate. Of course, when Dt becomes smaller and e is fixed, the linear
penalty method is accurate. Here, the initial data is far from the equilibrium hence the linear penalty method is not appro-
priate since it does not have any mechanism of projection to the steady state when e is small.
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Fig. 2. Approximation of the solution to (3.8) obtained from our AP scheme (3.1) and the linear penalty method (3.4) for different values of the Knudsen
number e = 10�1, 10�2 and 10�7.
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4. The Boltzmann equation

We now extend the method to the Boltzmann Eq. (1.1). To this aim, we rewrite the Boltzmann Eq. (1.1) in the following
form
@f
@t þ vrxf ¼ Qðf Þ�Pðf Þ

e þ Pðf Þ
e ; x 2 X � Rdx ; v 2 Rdv ;

f ð0; x; vÞ ¼ f0ðx;vÞ; x 2 X; v 2 Rdv ;

(
ð4:1Þ
where the operator P is a ‘‘well-balanced relaxation approximation” of Qðf Þ, which means that it satisfies the following (bal-
ance law)
Z

Rdv
Pðf Þ/ðvÞdv ¼ 0; /ðvÞ ¼ 1;v ; jv j2;
and preserves the steady state i.e. PðMq;u;TÞ ¼ 0 whereMq;u;T is the Maxwellian distribution associated to q, u and T given by
(1.5). Moreover, it is a relaxation operator in velocity
Pðf Þ ¼ b Mq;u;TðvÞ � f ðvÞ

 �

: ð4:2Þ
4.1. Choice of the free parameter b

For instance, P(f) can be computed from an expansion of the Boltzmann operator with respect to Mq;u;T :
Qðf Þ ’ QðMq;u;TÞ þ rQðMq;u;TÞ Mq;u;T � f

 �

:

Thus, we choose b > 0 as an upper bound of the operator rQðMq;u;TÞ. Other choices of b are also possible, for example
b ¼ sup
Qðf Þ � QðMÞ

f �M

����
���� ¼ sup

Qðf Þ
f �M

����
����;
or, at time tn,
bn ¼ sup
Qðf nÞ � Qðf n�1Þ

f n � f n�1

����
����:
Then P(f) given by (4.2) is just the BGK collisional operator [3].
One can also choose b such that the operator P(f) gives the same viscosity (of order to e) as Qðf Þ when applying a Chap-

man–Enskog expansion.

4.2. Discretization to the Boltzmann equation

Since the convection term in (4.1) is not stiff, we will treat it explicitly. The source terms on the right hand side of (4.1)
will be handled using the ODE solver in the previous section. For example, if the first order scheme (2.6) is used, then we
have
f nþ1�f n

Dt þ v � rxf n ¼ Qðf nÞ�Pðf nÞ
e þ Pðf nþ1Þ

e ;

f 0ðx; vÞ ¼ f0ðx;vÞ:

(
ð4:3Þ
Using the relaxation structure of P(f) given in (4.2), it can be written as



F. Filbet, S. Jin / Journal of Computational Physics 229 (2010) 7625–7648 7635
f nþ1 ¼ e
eþ bnþ1Dt

f n � Dtvrxf n½ � þ Dt
Qðf nÞ � Pðf nÞ
eþ bnþ1Dt

þ bnþ1Dt

eþ bnþ1Dt
Mnþ1; ð4:4Þ
where bn+1 = b(qn+1,Tn+1) and Mnþ1 is the Maxwellian distribution computed from fn+1.

Although (4.4) appears nonlinearly implicit, it can be computed explicitly. Specifically, upon multiplying (4.4) by /(v) de-
fined in (1.4), and use the conservation property ofQ and P and the definition ofM in (1.5), we define the macroscopic quan-
tity U by U :¼ (q,qu,T) computed from f and get [14,53]
Unþ1 ¼ e
eþ bnþ1Dt

Z
/ðvÞðf n � Dtv � rxf nÞdv þ bnþ1Dt

eþ bnþ1Dt
Unþ1;
or simply
Unþ1 ¼
Z

/ðvÞðf n � Dtv � rxf nÞdv :
Thus Un+1 can be obtained explicitly, which defines Mnþ1. Now fn+1 can be obtained from (4.4) explicitly. In summary,
although (4.3) is nonlinearly implicit, it can be solved explicitly, thus satisfies the second condition of an AP scheme.

Clearly, scheme (4.3) satisfies the following properties.

Proposition 4.1. Consider the numerical solution given by (4.3) . Then,

(i) If e ? 0 and f n ¼Mn þ OðeÞ, then f nþ1 ¼Mnþ1 þ OðeÞ. Thus, when e ? 0, the (moments of the) scheme becomes a consis-
tent discretization of the Euler system (1.7).

(ii) Assume e
 1 and f n ¼Mn þ egn. If there exists a constant C > 0 such that
gnþ1 � gn

Dt

����
����þ rx vgnð Þk k þ kgnk 6 C; ð4:5Þ
and
kUnk þ Unþ1 � Un

Dt

�����
����� 6 C; ð4:6Þ
then the scheme (4.3) asymptotically becomes a first order in time approximation of the compressible Navier–Stokes (1.8).
Proof. We easily first check that for e ? 0 and f n ¼Mn þ OðeÞ, we get f nþ1 ¼Mnþ1 þ OðeÞ. Therefore, we multiply (4.3) by
(1,v,—v—2/2) and integrate with respect to v, which yields that Un is given by a time explicit scheme of the Euler system (1.7).

Now let us prove (ii). We apply the classical Chapman–Enskog expansion:
f n ¼Mn þ egn ð4:7Þ
and integrate (4.3) with respect to v 2 Rdv . By using the conservation properties of the Boltzmann operator (1.4) and of the
well-balanced approximation P(f),
Unþ1 � Un

Dt
þrv �

Z
Rdv

1
v
jvj2

2

0
B@

1
CAvðMn þ egnÞdv ¼ 0: ð4:8Þ
For eg = 0, this is the compressible Euler equations (1.7). Thus, a consistent approximation of the compressible Navier–Stokes
is directly related to a consistent approximation of gn. Inserting decomposition (4.7) into the scheme (4.3) gives
Mnþ1 �Mn

Dt
þ vrxMn þ e

gnþ1 � gn

Dt
þ vrxgn

� �
¼ QðM

n þ egnÞ
e

� bngn � bnþ1gnþ1
 �
;

Since Q is bilinear and QðMÞ ¼ 0, one has
QðMþ egÞ ¼ QðMÞ þ eLMðgÞ þ e2QðgÞ;
where LM is the linearized collision operator with respect to M. Thus, we get
Mnþ1 �Mn

Dt
� bngn � bnþ1gnþ1
 �

þ e
gnþ1 � gn

Dt
þ vrxgn �QðgnÞ

� 	
¼ LMðgnÞ � vrxMn; ð4:9Þ
It is well known that LM is a non-positive self-adjoint operator on L2
M defined by the set
L2
M :¼ fu : uM�1=2 2 L2ðRdv Þg
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and that its kernel is NðLMÞ ¼ SpanfM;vM; jv j2Mg. Let PM be the orthogonal projection in L2
M onto NðLMÞ. After easy

computations in the orthogonal basis, one finds that [5]
PMðwÞ ¼
M
q

m0 þ
v � u

T
m1 þ

jv � uj2

2T
� dv

2

 !
m2

" #
;

where
m0 ¼
Z

Rdv
wdv ; m1 ¼

Z
Rdv
ðv � uÞwdv; m2 ¼

Z
Rdv

jv � uj2

2T
� dv

2

 !
wdv:
It is easy to verify that PMn ðMnÞ ¼ Mn and
PMn ðgnÞ ¼ PMn ðgnþ1Þ ¼ PMn ðQðgnÞÞ ¼ PMnðLMnðgnÞÞ ¼ 0:
Then applying the orthogonal projection I�PMn to (4.9), it yields
I�PMnð Þ M
nþ1�Mn

Dt

 !
� bngn�bnþ1gnþ1� �

þe
gnþ1�gn

Dt
þ I�PMnð ÞðvrxgnÞ�QðgnÞ

� 	
¼LMðgnÞ� I�PMnð ÞðvrxMnÞ:
Using the assumption (4.5) we get that the term
e
gnþ1 � gn

Dt
þ I�PMnð ÞðvrxgnÞ � QðgnÞ

� 	

is of order e. Then, it remains to estimate the terms bn+1gn+1 � bngn and
I�PMnð Þ M
nþ1 �Mn

Dt

 !
:

First, we have
bnþ1gnþ1 � bngn ¼ bnþ1ðgnþ1 � gnÞ þ ðbnþ1 � bnÞgn:
Under the assumption (4.5) and (4.6), and since bn only depends on Un, we easily get
bnþ1gnþ1 � bngn ¼ OðDtÞ: ð4:10Þ
Next using a Taylor expansion we find that
Mnþ1 ¼Mn 1þ qnþ1 � qn

qn
þ v � un

Tn unþ1 � un
� �

þ jv � unj2

2Tn � d
2

 !
Tnþ1 � Tn

Tn

" #
þ OðDt2Þ
and by definition of PM
PMn ðMnþ1Þ ¼ Mn 1þ qnþ1 � qn

qn
þ v � un

Tn unþ1 � un
� �

þ jv � unj2

2Tn � d
2

 !
Tnþ1 � Tn

Tn

 #

þMn jv � unj2

2Tn � d
2

 !
Tnþ1 � Tn

qnTn ðqnþ1 � qnÞ þ qnþ1

dqnTn ðunþ1 � unÞ2
" #

þMn v � un

Tn
qnþ1 � qn

qn
unþ1 � un
� �

þ OðDt2Þ:
Thus, under assumption (4.6), we have
I�PMnð Þ M
nþ1 �Mn

Dt

 !
¼ OðDtÞ: ð4:11Þ
Gathering (4.10) and (4.11), the residual distribution function is given by
gn ¼ L�1
Mn I�PMnð Þ v � rxMnð Þð Þ þ OðeÞ þ OðDtÞ:
Now, substituting this latter expression in (4.8), we get
Unþ1 � Un

Dt
þrx � FðUÞ ¼ �erx �

Z
Rdv

v
v � v
v jvj

2

2

0
B@

1
CAL�1

Mn Id�PMnð Þ v � rxMnð Þð Þdv ð4:12Þ

þ O eDt þ e2� �
; ð4:13Þ
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where
FðUÞ ¼
qu

qu� uþ pI
ðEþ pÞu

0
B@

1
CA:
To complete the proof, it remains to compute the term in O(e). After some computations, we first get
I�PMnð Þ v � rxMnð Þ ¼ B ruþ ðruÞT � d
2
r � uI

� �
þ A
rTffiffiffi

T
p

� 	
MðvÞ;
with
A ¼ jv � uj2

2T
� dþ 2

2

 !
v � uffiffiffi

T
p ; B ¼ 1

2
ðv � uÞ � ðv � uÞ

2T
� jv � uj2

dT
I

 !
:

Therefore, it yields
L�1
Mn I�PMnð Þ v � rxMnð Þð Þ ¼ L�1

MnðBMÞ ruþ ðruÞT � d
2
r � uI

� �
þ L�1

Mn ðAMÞrTffiffiffi
T
p :
Substituting this expression in (4.8), we get a consistent time discretization scheme to the compressible Navier–Stokes sys-
tem where the term of order of e is given by
erx �
0

lerðueÞ
lerðueÞuþ jerxTe

0
B@

1
CA;
with
rðuÞ ¼ rxuþ rxuð ÞT � 2
dv
rx � uI;
while the viscosity le = l(Te) and the thermal conductivity je = j(Te) are defined according to the linearized Boltzmann oper-
ator with respect to the local Maxwellian [1]. h

At this stage, let us address several comments concerning Proposition 4.1.

� Note that the assumption (4.5) is very difficult to prove for our scheme. However, a similar assumption is done in [2].
� We only prove theoretical results when the initial data is close enough to the local Maxwellian. However, it is expected

that, as it is shown in Section 3, after the initial transient time the solution is only O(e) distance from the local equilibrium.
While this has not been proven for the Boltzmann equation (since it does not have a property similar to (1.13), our numer-
ical results in Section 4 strongly suggest so. A rigorous proof remains an open question.
� Under-resolved computations using AP schemes can only capture the solutions of the Euler equations. To capture the

Navier–Stokes approximation that has O(e) viscosity and heat conductivity, one needs the mesh size and cDt to be o(e)
(c is a characteristic speed). Thus conclusion (ii) in the above proposition shows that the scheme is consistent to the
Navier–Stokes equations provided that the viscous terms are resolved. In other words, one cannot expect to capture
the Navier–Stokes solution with under-resolved (Dx

c ;Dt � e) mesh sizes and time steps. On the other hand, if one has
to resolve the viscous term using Dx

c ;Dt ¼ oðeÞ it will be more efficient to directly solve the Boltzmann equation directly.
Thus we do not advocate an AP scheme for the compressible Navier–Stokes limit. Nevertheless, the result of Proposition
4.1 (ii) is still analytically interesting. If one directly compares the error of numerical solutions f with the solution of the
Boltzmann equation by, say a first order method, one usually arrives at an error of O(Dt/e) (see a related study in [31]), but
if compared with the solutions of the Navier–Stokes equation, which are moments of f, (4.12) shows that the error is of
order O(Dt + eDt). Here O(Dt) comes from the Euler time discretization of Ut.

4.3. Second order IMEX scheme for the Boltzmann equation

In the following section, which is devoted to numerical simulations to the Boltzmann equation, we also have imple-
mented a second order IMEX scheme:
f H ¼ e
eþbHDt

f n � Dtvrxf n½ � þ Dt Qðf
nÞ�Pðf nÞ

eþbHDt
þ bHDt

eþbHDt
MH;

f nþ1 ¼ e
eþbnþ1Dt=2

f n � Dtvrxf H½ � þ Dt Qðf
HÞ�Pðf HÞ

eþbnþ1Dt=2
þ Dt

2eþbnþ1Dt
bnþ1Mnþ1 þ bnðMn � f nÞ
� �

;

8<
: ð4:14Þ
where bw = b(qw,Tw) and MH is the Maxwellian distribution computed from fw.
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4.4. Space discretization

On the one hand, the approximation of the Boltzmann operator is performed by a fast spectral Fourier-Galerkin method
already proposed in [27]. On the other hand, the approximation in space is achived using a second order finite volume
scheme. Let (xi+1/2)i2I a set of points of the space domain and I a bounded set of integers, hence for Dx = xi+1/2 � xi�1/2
Z xiþ1=2

xi�1=2

vx
@f
@x

dx ¼ F iþ1=2 � F i�1=2

Dx
;

where F iþ1=2 ¼ vþx f l
iþ1=2 � v�x f r

iþ1=2 and vþx ¼ maxðvx;0Þ;v�x ¼maxð�vx;0Þ,
f l
iþ1=2 ¼ fi þ

dfiþ1=2

2
; f r

iþ1=2 ¼ fiþ1 �
dfiþ1=2

2
:

and df represents a slope with a slope limiter (see for instance [43]).

5. Numerical tests

In this section we perform several numerical simulations for the Boltzmann equation in different asymptotic regimes in
order to check the performance (in stability and accuracy) of our methods. We have implemented the first order (2.6) and
second order (2.8) scheme for the approximation of the Boltzmann equation. Here, the Boltzmann collision operator is dis-
cretized by a deterministic method [22–25,27,52], which gives a spectrally accurate approximation. A classical second order
finite volume scheme with slope limiters is applied for the transport operator as sdescribed in Section 4.4.

For all numerical simulations, we have considered Maxwellian molecules, that is a = 0 in (1.3). Hence, we take b = 2pq
such that both operators P(f) and the full Boltzmann operator Qðf Þ have the same loss term corresponding to the dissipative
part.

5.1. Approximation of smooth solutions

This test is used to evaluate the order of accuracy of our new methods. More precisely, we want to show that our methods
(4.4) and (4.14) are uniformly accurate with respect to the parameter e > 0. We consider the Boltzmann Eq. (1.1) in 1dx 	 2dv.
We take a smooth initial data
f0ðx;vÞ ¼
q0ðxÞ

2pT0ðxÞ
exp � jv j2

2T0ðxÞ

 !
; ðx;vÞ 2 ½�L; L� 	 R2;
with q0(x) = (11 � 9tanh (x))/10, T0(x) = (3 � tanh (x))/4, L = 1 and assume specular reflection boundary conditions in x.
Numerical solutions are computed from different phase space meshes: the number of point in space is nx = 50, 100, 200,
. . ., 1600 and the number of points in velocity is n2

v with nv = 8, . . ., 64 (for which the spectral accuracy is achieved), the time
step is computed such that the CFL condition for the transport is satisfied Dt 6 Dx/vmax, where Dx is the space step and
vmax = 7 is the truncation of the velocity domain. Then different values of e are considered starting from the fully kinetic re-
gime e = 1, up to the fluid limit e = 10�5 corresponding to the solution of the Euler system (1.7). The final time is Tmax = 1 such
that the solution is smooth for the different regimes.

An estimation of the relative error in Lp norm is given by
ε = 1.E-5

log(h)
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Fig. 3. The L1 and L1 errors of the second order method (4.14) for different values of the Knudsen number e = 10�5, . . . ,1.
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e2h ¼ max
t2ð0;TÞ

kfhðtÞ � f2hðtÞkp

kf0kp

 !
; 1 6 p 6 þ1;
where fh represents the approximation computed from a grid of order h. The numerical scheme is said to be kth order if
e2h 6 Chk, for all 0 < h
 1.

In Fig. 3, the L1 and L1 errors of the second order method (4.14) are presented. They show a uniformly second order con-
vergence rate (an estimation of the slope is 1.9) in space and time (the velocity discretization is spectrally accuracy in v thus
does not contribute much to the errors). The time step is not constrained by the value of e, showing a uniform stability in time.

5.2. The Riemann problem

This test deals with the numerical solution to the 1dx 	 2dv Boltzmann equation for Maxwellian molecules (c = 0). We
present numerical simulations for one dimensional Riemann problem and compute an approximation for different Knudsen
numbers, from rarefied regime to the fluid regime.

Here, the initial data corresponding to the Boltzmann equations are given by the Maxwellian distributions computed
from the following macroscopic quantities
ðql;ul; TlÞ ¼ ð1;0;1Þ; if 0 6 x 6 0:5;
ðqr ;ur ; TrÞ ¼ ð0:125; 0;0:25Þ; if0:5 < x 6 1:

�

We perform several computations for e = 1, 10�1, 10�2, . . ., 10�4. In Fig. 4, we only show the results obtained in the kinetic
regime (10�2) using a spectral scheme for the discretization of the collision operator [27] (with nv = 322 and a truncation of
the velocity domain vmax = 7) and second order explicit Runge–Kutta and second order method (4.14) for the time discret-
ization with a time step Dt = 0.005 satisfying the CFL condition for the transport part (with nx = 100). For such a value of e, the
problem is not stiff and this test is only performed to compare the accuracy of our second order scheme (4.14) with the clas-
sical (second order) Runge–Kutta method. We present several snapshots of the density, mean velocity, temperature and heat
flux
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Riemann problem (e = 10�2), crosses (x) represent the numerical solution obtained with our second order method (4.14) and lines with the explicit
Kutta method: evolution of (1) the density q, (2) mean velocity u, (3) temperature T and (4) heat flux Q at time t = 0.05, 0.1, 0.15 and 0.2.
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Qðt; xÞ :¼ 1
e

Z
Rdv
ðv � ueÞjv � uej2feðt; x; vÞdv
at different time t = 0.10 and 0.20. Both results agree well with only nx = 100 in the space domain and nv = 32 for the velocity
space. Thus, in the kinetic regime our second order method (4.14) gives the same accuracy as a second order fully explicit
scheme without any additional computational effort.

Now, we investigate the cases of small values of e for which an explicit scheme requires the time step to be of order O(e).
In order to evaluate the accuracy of our method (4.14) in the Navier–Stokes regime (for small e
 1 but not negligible), we
compared the numerical solution for e = 10�3 with one obtained with a small time step Dt = O(e) (for which the computation
is still feasible). Note that a direct comparison with the numerical solution to the compressible Navier–Stokes system (1.8) is
difficult since the viscosity le = l(Te) and the thermal conductivity je = j(Te) are not explicitly known. Therefore, in Fig. 5, we
report the numerical results for e = 10�3 and propose a comparison between the numerical solution obtained with the
scheme (4.14) and the one obtained with a second order explicit Runge–Kutta method. In this case, the behavior of macro-
scopic quantities (density, mean velocity, temperature and heat flux) agree very well even if the time step is at least ten
times larger with our method (4.4) or (4.14).

Then in Fig. 6, we compare the numerical solution of the Boltzmann Eq. (1.1) with the numerical solution to the com-
pressible Navier–Stokes system derived from the BGK model since the viscosity and heat conductivity are in that case explic-
itly known [2]. To approximate the compressible Navier–Stokes system, we apply a second order Lax–Friedrich scheme using
a large number of points (nx = 1000) whereas we only used nx = 100, and 200 points in space and n2

v ¼ 322 points in velocity
for the approximation of the kinetic Eq. (1.1). In this problem, the density, mean velocity and temperature are relatively close
to the one obtained with the approximation of the Navier–Stokes system. Even the qualitative behavior of the heat flux
agrees well with the heat flux corresponding to the compressible Navier–Stokes system jerxTe, with je = qeTe (see Fig. 6),
yet some differences can be observed, which means that the use of BGK models to derive macroscopic models has a strong
influence on the heat flux.

Finally in Fig. 7, we present a comparison to the numerical solution obtained with our AP scheme for a very small value of
e = 10�8 with the numerical solution to the Euler system. The agreement on the density, mean velocity and temperature is
very satisfying with only nx = 100 in the space domain for the solution to the kinetic model.
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Riemann problem (e = 10�3), crosses (x) represent the numerical solution obtained with our second order method (4.14) and lines with the explicit
Kutta method: evolution of (1) the density q, (2) mean velocity u, (3) temperature T and (4) heat flux Q at time t = 0.05, 0.1, 0.15 and 0.2.
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Fig. 6. Riemann problem (e = 10�4), comparison between the numerical solution to the Boltzmann equation with our second order method (4.14)
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5.3. A problem with mixing regimes

Now we consider the Boltzmann Eq. (1.1) with the Knudsen number e > 0 depending on the space variable in a wide range
of mixing scales.

This kind of problem was already studied by several authors for the BGK model [20] or the radiative transfer equation
[42]. In this problem, e : R#Rþ is given by
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Fig. 7. Riemann problem (e = 10�8), comparison with the solution to the Euler system: evolution of (1) the density q, (2) mean velocity u, and (3)
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eðxÞ ¼ e0 þ
1
2

tanhð1� 11xÞ þ tanhð1þ 11xÞ½ �;
which varies smoothly from e0 to O(1).

Euler regime

ε ∼ 1

regime
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This numerical test is difficult because different scales are involved. It requires a good accuracy of the numerical scheme

for all range of e. In order to focus on the multi-scale nature we only consider periodic boundary conditions, even if the meth-
od has also been used with specular reflection in space. Furthermore, to increase the difficulty we consider an initial data
which is far from the local equilibrium of the collision operator:
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f0ðx; vÞ ¼
q0

2
exp � jv � u0j2

T

 !
þ exp � jv þ u0j2

T0

 !" #
; x 2 ½�L; L�; v 2 R2;
with u0 = (3/4,�3/4),
q0ðxÞ ¼
2þ sinðkxÞ

2
; T0ðxÞ ¼

5þ 2 cosðkxÞ
20

;

where k = p/L and L = 1/2.
Here we cannot compare the numerical solution with the one obtained by a macroscopic model. From the numerical sim-

ulations, we observe that the solution is smooth during a short time and some discontinuities are formed in the region where
the Knudsen number e is very small and then propagate into the physical domain.

On the one hand, we only take e0 = 10�3 in order to propose a comparison of numerical solutions computed with a second
order method using a time step Dt = 0.001 (such that the CFL condition for the transport part is satisfied) and the one by the
second order explicit Runge–Kutta method with a smaller time step Dt = 0.0001) to get stability. The number of points in
space is nx = 200 and in velocity is n2

v ¼ 322. Clearly, in Fig. 8, the results are in good agreement even if our new method does
not solve accurately small time scales when the solution is far from the local equilibrium. Moreover in Fig. 9, we present
numerical results with only nx = 50 and nx = 200, and n2

v ¼ 322 to show the performance of the method with a small number
of discretization points in space. With nx = 50 points the qualitative behavior of the macroscopic quantities (q,u,T) is fairly
good.

On the other hand, we have performed different numerical results when e0 = 10�4, then the variations of e starts from
10�4 to 1 in the space domain. In that case, the computational time of a fully explicit scheme would be more than one hun-
dred times larger than the one required for the asymptotic-preserving scheme (4.14). We observe that discontinuities appear
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on the density, mean velocity and temperature and then propagate accurately into the domain. The shock speed is roughly
the same for the different numerical resolutions. Therefore, this method gives a very good compromise between accuracy
and stability for the different regimes. Numerical results are not plotted since they are relatively close to the ones presented
in Figs. 8 and 9.
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45-2

-1

 0

 1

 2

-2 -1  0  1  2

level set of numerical solution, t = 0.1

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45-2

-1

 0

 1

 2

-2 -1  0  1  2

level set of numerical solution, t = 0.4

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45-2

-1

 0

 1

 2

-2 -1  0  1  2

level set of numerical solution, t = 0.8

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45-2

-1

 0

 1

 2

-2 -1  0  1  2

level set of numerical solution, t = 1.0

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45-2

-1

 0

 1

 2

-2 -1  0  1  2

level set of numerical solution, t = 1.2

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45-2

-1

 0

 1

 2

-2 -1  0  1  2

level set of numerical solution, t = 4.0

Fig. 10. Nonlinear Fokker–Planck solution: convergence toward equilibrium (Barenblatt–Pattle distribution) obtained with the first order method (2.6)
using nx = 100 at time t = 0.1, 0.4, 0.8, 1.0, 1.2 and 4 with a large time step.
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6. Other applications: a nonlinear diffusion equation

In this section, we want to illustrate the efficiency of the asymptotic preserving scheme to treat high order differential
operators. Such a scheme has already been applied to Willmore flow, a fourth order differential operator [54]. Here, we con-
sider the flow of gas in a two dimensional porous medium with initial density g0(v) P 0. The distribution function g(t,v) then
satisfies the nonlinear degenerate parabolic equation
Fig. 11
using n
@g
@t ¼ Dvgm; v 2 Rdv ;

gðt ¼ 0; vÞ ¼ g0ðvÞ; v 2 Rdv ;

(
ð6:1Þ
where m > 1 is a physical constant. Assuming that
Z
R2
ð1þ jv j2Þg0ðvÞdv < þ1;
Carrillo and Toscani [9] proved that g(t,v) behaves asymptotically in a self-similar way like the Barenblatt–Pattle solution, as
t ? +1. More precisely, it is easy to see that if we consider the change of variables
gðt;vÞ ¼ 1
sðtÞ f logðsðtÞÞ; v

sðtÞ

� �
; ð6:2Þ
where sðtÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t
p

, the new distribution function f is solution to
@f
@t
¼ rv � vf þrv f mð Þ;
and converges to the Barenblatt–Pattle distribution
MðvÞ ¼ C �m� 1
2m

jv j2
� �1=ðm�1Þ

þ
;

where C is uniquely determined and depends on the initial mass g0 but not on the ‘‘details” of the initial data.
Instead of working on (6.1) directly, we will study the asymptotic decay towards its equilibrium. The key argument on the

proof of Carrillo and Toscani is the control of the entropy functional
Hðf Þ ¼
Z

R2
jv j2f ðt;vÞ þ m

m� 1
f mðt;vÞ

h i
dv ;
which satisfies
dHðf Þ
dt
¼ �

Z
R2

f ðt; vÞ v þ m
m� 1

rf m�1
��� ���2dv 6 0
or the control of the relative entropy Hðf jMÞ ¼ Hðf Þ � HðMÞ with respect to the steady state M.
Numerical discretization of this problem leads to the following difficulty: explicit schemes are constrained by a CFL con-

dition Dt ’ Dv2 whereas implicit schemes require the numerical resolution of a nonlinear problem at each time step (with a
local constraint on the time step). We refer to [11,26] for a fully implicit approximation preserving steady states for nonlin-
ear Fokker–Planck type equations.
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. Nonlinear Fokker–Planck solution: convergence toward equilibrium (Barenblatt–Pattle distribution) obtained with the first order method (2.6)
x = 100 with Dt = 0.02 and 0.001.
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Here we do not focus on the velocity discretization, but only want to apply our splitting operator technique to remove this
severe constraint on the time step. Here the parameter e does not represent a physical time scale but is only related to the
velocity space discretization Dv. Therefore, we set Qðf Þ ¼ rv � ðvf þrv f mÞ and Pðf Þ ¼ rQðMÞðf �MÞ, which leads to the
following decomposition
@f
@t
¼ rv � vMþrvðf m �mMm�1ðf �MÞÞ

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non dissipative part

þrv � vðf �MÞ þmrv Mm�1ðf �MÞ
� �� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

stiff ; dissipative linear part

:

Then we apply a simple IMEX scheme which only requires the numerical resolution of a linear system at each time step.
We choose m = 3 and a discontinuous initial datum far from the equilibrium
f0ðvÞ ¼
X

l2f1;2g

X
k2f0;...;n�1g

1
10

1Bð0;r0Þðv � vk;lÞ;
where n = 12, r0 = 1/4 and vk;l ¼ leihk , with hk = 2kp/n, k = 0, . . ., n � 1. We use a standard velocity discretization in the velocity
space based on an upwind finite volume approximation for the transport term and a center difference for the diffusive part.
We take n2

v ¼ 1202 in velocity and a time step Dt = 0.02 which is much larger than the time step satisfying a classical CFL
condition for this problem Dt ’ O(Dv2). The numerical scheme (2.6) is still stable and the numerical solution preserves
nonegativity at each time step (see Fig. 10)! For large time, the solution converges to an approximation of the steady state
even if the present scheme is not exactly well balanced (it does not preserve exactly the steady state). Moreover, to get a
better idea on the behavior of the numerical solution, we plot the evolution of the entropy and its dissipation for different
time steps (see Fig. 11). More surprisingly, the numerical entropy is decreasing and the dissipation converges towards zero
when time goes to infinity.
7. Conclusion

We have proposed a new class of numerical schemes for physical problems with multiple time and spatial scales de-
scribed by a stiff nonlinear source term. A prototype equation of this type is the Boltzmann equation for rarefied gas.
When the Knudsen number is small, the stiff collision term of the Boltzmann equation drives the density distribution
to the local Maxwellian, thus the macroscopic quantities such as mass, velocity and temperature evolve according to fluid
dynamic equations such as the Euler or Navier–Stokes equations. Asymptotic-preserving (AP) schemes for kinetic equa-
tions have been successful since they capture the fluid dynamic behavior even without numerically resolving the small
Knudsen number. However, the AP schemes need to treat the stiff collision terms implicitly, thus it yields a complicated
numerical algebraic problem due to the nonlinearity and non-locality of the collision term. In this paper, we propose to
augment the nonlinear Boltzmann collision operator by a much simpler BGK collision operator, and apply an implicit
scheme only on the BGK operator which can be handled much more easily. For hyperbolic systems with relaxations
We show that this method is AP in the Euler regime, after the initial transient time, and is also consistent to the Na-
vier–Stokes approximations for suitably small time steps and mesh sizes. Numerical examples, including those with mix-
ing scales and non-local Maxwellian initial data, demonstrate the AP property as well as uniform convergence (in the
Knudsen number) of this method.

This method can be extended to a wide class of PDEs (or ODEs) with stiff source terms that admit a stable and unique local
equilibrium. One example is the hyperbolic system with relaxations which are studied in this paper. We also use the non-
linear Fokker–Planck equation as an example to illustrate this point, and will pursue more applications in the future.

It is worth to mention that the present method is essentially based on a decomposition of the nonlinear operator as the
sum of a linear and dissipative part and a nonlinear part (2.5). Therefore, it does not need a specific velocity and space dis-
cretization and can be easily applied to different stochastic and deterministic schemes. Moreover, based on this decompo-
sition, other schemes can be constructed [17].

In this paper we do not mention the numerical treatment of boundary conditions although the method naturally applies
to periodic and specular reflection boundary conditions. However, for physical boundary conditions, as Maxwell diffusive
conditions, boundary layers will be generated where the solution is very far away from Gaussian distributions [55]. There-
fore, adequate space and time discretizations deserve attention and will constitute a very interesting problem that we would
like to deal with. We refer to [29] for a numerical treatment of boundary conditions for the Boltzmann equation using deter-
ministic method [29], where the influence of boundary conditions is studied far away the boundary. This work was not
aimed at the AP property. There have been very few studies on AP schemes for boundary value problems, except those
on linear transport equation in the diffusive regimes with Dirichlet boundary conditions [31,37,38]. This is an important sub-
ject for future research.
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